Kerasは、Pythonで書かれたオープンソースニューラルネットワークライブラリである。MXNet、Deeplearning4j、TensorFlow、CNTK、Theanoの上部で動作することができる。ディープニューラルネットワークを用いた迅速な実験を可能にするよう設計され、最小限、モジュール式、拡張可能であることに重点が置かれている。プロジェクトONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System) の研究の一部として開発された。中心的な開発者、メンテナはGoogleのエンジニアのFrançois Cholletである。

2017年、GoogleのTensorFlowチームは、TensorFlowのコアライブラリにおいてKerasをサポートすることを決定した。Cholletは、Kerasはタスク全体を担う機械学習ライブラリよりむしろインタフェースとして着想された、と説明した。Kerasはバックエンドの科学計算ライブラリにかかわらず、ニューラルネットワークの設定を容易に行うことができる、より高いレベルでより直感的な一連の抽象化を提供している。マイクロソフトはKerasにCNTKバックエンドを追加する作業を行っている。

特長

Kerasライブラリは、レイヤー(層)、目的関数、活性化関数、最適化器、画像やテキストデータをより容易に扱う多くのツールといった一般に用いられているニューラルネットワークのビルディングブロックの膨大な数の実装を含む。コードはGitHub上にホストされ、GitHub issues pageやGitter channel、Slack channelなどのサポートフォーラムがある。

標準的なニューラルネットワークに加えて、Kerasは畳み込みニューラルネットワークと回帰型ニューラルネットワークをサポートしている。また、Dropout、Batch Normalization、Poolingなどの他の一般的なユーティリティレイヤをサポートしている。

Kerasは、スマートフォン (iOS/Android)、Web、またはJava仮想マシンでディープモデルを製品化することを可能にする。また、GPUとTPUのクラスター上でディープラーニングモデルの分散トレーニングを使用することもできる。

脚注

関連項目

  • ディープラーニングソフトウェアの比較

外部リンク

  • 公式ウェブサイト
  • Official blog
  • keras - GitHub

Was ist Keras? Data Basecamp

The Keras Blog

Keras Tutorial What is Keras and Keras Applications & Features

Keras Model How to Use Keras Model with examples?

Keras Neural Network How to Use Keras Neural Network? Layers